Discussion 13 Worksheet Double integrals in polar coordinates and surface areas of graphs

Date: 10/13/2021

MATH 53 Multivariable Calculus

1 Double integral practice

Compute these integrals:
(a) $\iint_{D} x \cos y d A$ where D is bounded by $y=0, y=x^{2}, x=1$;
(b) $\iint_{D} 2 x-y d A$ where D is bounded by the circle with center at the origin and radius 2 .
(c) Find the volume of the solid under the surface $z=x y$ and above the triangle with vertices $(1,1),(4,1),(1,2)$.
(d) Find the volume enclosed by the "parabolic cylinders" $z=x^{2}, y=x^{2}$ and the planes $z=0$ and $y=4$.
(e) Find the volume of the solid by subtracting two volumes. The solid is enclosed by the parabolic cylinders $y=1-x^{2}, y=x^{2}-1$ and the planes $x+y+z=2,2 x+2 y-z+10=0$.

2 Polar Integration

Remember $d A$ becomes $r d r d \theta$.
(a) $\iint_{D} x^{2} y d A$ where D is the top half of the disk with center the origin and radius 5 ;
(b) $\iint_{D} e^{-x^{2}-y^{2}} d A$ where D is the region bounded by the semicircle $x=\sqrt{4-y^{2}}$ and the y-axis.

3 Surface Areas

Parametrize the following surfaces in an appropriate way (if they are not already parametrized) and compute their normal vectors and area.
(a) The portion of the elliptic paraboloid $z=x^{2}+y^{2}$ lying over the unit disk.
(b) The part of the surface $z=x y$ that lies within the cylinder $x^{2}+y^{2}=1$.

4 Triple Integration

Change the order of integration for these integrals. Sketching the region of integration might be helpful.
(a) Rewrite the integral

$$
\int_{0}^{1} \int_{\sqrt{x}}^{1} \int_{0}^{1-y} f(x, y, z) d z d y d x
$$

as the equivalent iterated integral in the five other orders.

5 Challenge

(a) Find the volume of a right pyramid by setting up a triple integral. (Hint: Place 3 vertices on the coordinate axes and the fourth at the origin and use the plane equation.)

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.

